Curriculum Vitae and Statements
Publication list
- E. Bodish, B. Elias, D.E.V. Rose, and L. Tatham. A note on the Sundaram–Stanley bijection (or, Viennot for up-down tableaux). 2021. Submitted for publication. Preprint arXiv:2108.11528. 14 pages.
- M. Hogancamp, D.E.V. Rose, and P. Wedrich. Link splitting deformation of colored Khovanov–Rozansky homology. 2021. Submitted for publication. Preprint arXiv:2107.09590. 110 pages.
- M. Hogancamp, D.E.V. Rose, and P. Wedrich. A skein relation for singular Soergel bimodules. 2021. Submitted for publication. Preprint arXiv:2107.08117. 34 pages.
- E. Bodish, B. Elias, D.E.V. Rose, and L. Tatham. Type C Webs. 2021. Submitted for publication. Preprint arXiv:2103.14997. 45 pages.
- D.E.V. Rose, and L. Tatham. On webs in quantum type C. Canadian Journal of Mathematics. Published online February 26, 2021 (to appear in print). 40 pages.
- D.E.V. Rose and D. Tubbenhauer. HOMFLYPT homology for links in handlebodies via type A Soergel bimodules. Quantum Topology, 12 (2021), no. 2, 373–410.
- M. Abram, L. Lamberto-Egan, A. Lauda, and D.E.V. Rose. Categorification of the internal braid group action for quantum groups I: 2-functoriality. 2018. Preprint. 60 pages.
- H. Queffelec, D.E.V. Rose, and A. Sartori. Annular Evaluation and Link Homology. 2018. Submitted for publication. Preprint arXiv:1802.04131. 47 pages.
- H. Queffelec and D.E.V. Rose. Sutured annular Khovanov–Rozansky homology. Transactions of the American Mathematical Society, 370 (2018), 1285-1319.
- D.E.V. Rose and P. Wedrich. Deformations of colored sl(n) link homologies via foams. Geometry and Topology, 20 (2016), no. 6, 3431–3517.
- D.E.V. Rose and D. Tubbenhauer. Symmetric webs, Jones–Wenzl recursions, and q-Howe duality. International Mathematics Research Notices, 2016 (17): 5249–5290.
- H. Queffelec and D.E.V. Rose. The sl(n) foam 2-category: a combinatorial formulation of Khovanov–Rozansky homology via categorical skew Howe duality. Advances in Mathematics, 302 (2016), 1251–1339.
- A. Lauda, H. Queffelec, and D.E.V. Rose. Khovanov homology is a skew Howe 2-representation of categorified quantum sl(m). Algebraic and Geometric Topology, 15-5 (2015), 2517–2608.
- D.E.V. Rose. A note on the Grothendieck group of an additive category. Bulletin of Chelyabinsk State University, 2015. no. 3 (358). Mathematics. Mechanics. Informatics. Issue 17. pp. 135–139.
- D.E.V. Rose. A categorification of quantum sl(3) projectors and the sl(3) Reshetikhin-Turaev invariant of tangles. Quantum Topology, 5 (2014), no. 1, pp. 1–59.
- D.E.V. Rose and I. Spitkovsky. On the numerical range behavior under the generalized Aluthge transform. Linear and Multilinear Algebra, vol. 56 no. 1&2 (January, 2008), pp. 163–177.
- D.E.V. Rose and I. Spitkovsky. On the stabilization of the Aluthge sequence. International Journal of Information and Systems Sciences – Special Issue on Matrix Analysis and Applications, vol. 4 no. 1 (Spring, 2008), pp. 178–189.